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ff each element in a Toeplitz matrix is replaced by an c~ by/~ matrix and the 
original constraints preserved, the result is a doubly infinite matrix with 
periodic structure called a Toeplitz(~byt~) matrix. Such matrices are a basic 
tool for describing, generating, estimating, filtering, synchronizing, and 
analyzing information-theoretic functions for statistically periodic processes. 

KEY W O R D S :  Statistical periodicity; periodic processes; periodic linear 
transformations; random processes; estimation theory; Toeplitz matrices; 
infinite matrices; matrix Z-transforms; matrix-generating functions; com- 
munications theory; information theory; periodic difference equations; pulse 
amplitude modulation ; synchronization ; orthogonal functions. 

1. I N T R O D U C T I O N  

Statistically periodic processes can be defined analogously to statistically 
stationary processes. I f  the nth-order cumulative distribution function 

P(X(tl) -~ x l ,  x(12) ~ x 2 , ' " ,  X(tn) ~ Xn) 

is invariant for  all sets o f  x~ and t~ when each t~ is replaced by t~ + ~-, then the 
process will be strict-sense statistically periodic with period 7. I f  it is invariant 
only for  n = 1 and 2, the process will be wide-sense statistically periodic. 

Statistically periodic processes are a generalization o f  statistically 
stat ionary processes, and arise in physical science due to planetary and 
crystal-lattice periodicities, in satellite engineering due to periodicies o f  
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orbits, tumbles, etc., and in communications engineering because of the 
convenience and efficiency of  periodic data transmissions. Statistically periodic 
processes may also be useful models for processes in biology (respiration, 
heartbeat, diurnal activity) and commerce (weekly and annual cycles). Infinite 
matrices of periodic structure will be introduced and used to handle the 
linear algebra of periodic processes. 

2. S U M M A R Y  

A doubly infinite matrix A will be defined to be Toeplitz(lbyll if there 
exists a one-subscript sequence ..., a_l ,  ao, al .... , such that Ai,j -- aj_i for 
all i, j. Any column in a Toeplitz~lby 1~ matrix is the column to the left shifted 
down by one step; any row is the row above shifted right by one step. 

A doubly infinite matrix A will be defined to be Toeplitz~by~i, a and fi 
positive integers, if a partition can be made of vertical lines every fi columns 
and horizontal lines every a rows, such that the partitioned matrix is 
Toeplitzl~by~ in the a by fi submatrices created by the partition. Any a 
consecutive rows specify a Toeplitz~by~ matrix, since any other row, such 
as the nth, equals the (n rood a) row shifted to the right by entier (n/a). 
Similarly, any/~ consecutive columns also specify the whole matrix. 

Vectors of evenly-spaced samples of statistically stationary processes 
have Toeplitz~lbyl~ covariance matrices. ~) Similarly, use of a periodic auto- 
correlation function will show that vectors of samples every (period/a) of 
wide-sense statistically periodic processes have Toeplitzt~by~l covariance 
matrices. 

The scalar transforms previously associated with Toeplitz~xbyll ma- 
trices t~,2) are generalized to associated matrix transforms. Convergence of 
products of Toeplitzl~ by~ matrices is approached several ways, including the 
use of products of the associated transform matrices, as has been done with 
Toeplitzt~byl~ matrices, t~,2) and the basis for this is shown to be a type of 
Parseval's theorem problem. Widom's square-summable theory t~ is gene- 
ralized to Toeplitzt~by~ matrices, giving conditions for products directly 
upon the associated matrix transforms which would be used to evaluate the 
product when convergent. Multiplication of a vector by a Toeplitzt~bye~ 
matrix is shown to produce sums of rotations of the vector's associated 
0-transform. Inversion of Toeplitz~b~,B~ matrices is shown to depend upon 
boundedness of the determinant of the associated matrix 0-transform over 
the unit circle. 

Use of Toeplitz~by~ matrices permits various examples of statis- 
tically periodic processes to be formulated and analyzed. Sets of perio- 
dically shifted basis functions are introduced which generalize the 
{sin[~(t -- nT)/T])/[~v(t - -  n T ) / T ]  basis functions. Inclusion properties of the 
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space spanned by such sets are shown to be calculable from properties of 
matrix Z-transforms. Delay matrix studies show how samples of a continuous 
band-limited process at one set of sampling times are related by a 
Toeplitzl~by~ matrix to samples at a shifted set of times. 

Four domains are really relevant to Toeplitz(~b~B~ matrices: the matrix 
domain, the associated transform domain, the time domain of the matrix 
convolution summation, and the difference algorithm or shift register domain. 
Various aspects of statistically periodic processes are discussed in the appro- 
priate domain, including least-mean-square estimation of signals with addi- 
tive noise, hardware and software implementation of Toeplitz(~by~, matrix 
operations, and information-theoretic and synchronization problems. 

3. P R E V I O U S  R E L A T E D  W O R K  

In addition to Toeplitza by l) matrix material from Grenander and 
Szego m and Widom, (2~ other related work is z-transform theory and its 
association with shift registers] a~ estimation theory, 14~ Wiener filtering, (5~ 
infinite (or quarter-infinite) matrix theory, (6) and stability analyser v~ which 
are the continuous analog of some of the matrix results here. Previous for- 
mulations and analyses of statistically periodic processes appear confined to 
pulse amplitude modulation. (s-m These use nonmatrix approaches to de- 
velop spectral equations related to those of Section 6 and give estimation 
circuits equivalent to the Wiener filter of Section 11. The author knows of no 
previous use of Toeplitz(~by~l matrices, except his own. I1~) While this paper 
was being revised, Ogura a~ developed a different but related approach to 
describing statistically periodic processes, in which E[x(ta)x(t2)] is given a 
double Fourier series expansion whose coefficients involve finite Fourier 
integrals of the elements of a Toeplitzc~bvll matrix. 

4. S T A T I S T I C A L L Y  P E R I O D I C  PROCESSES 

The Discrete Gaussian Periodic Process. Let co be a random vari- 
able which is a member of the space f2 of all such variables, let o~ be a 
e-field of subsets of s and let P be a probability measure on ~' .  Assume that 
for each co, there exists the random sequence of real numbers ..., x~._l, 
xo~,0, x~,l .... which form the components of the infinite column vector x~,  
and assume that E is the expectation operator over all co in s The sequence 
..., xo~._~, X~.o, x~.~ .... will be called a discrete Gaussian periodic pro- 

cess with integer period /g if E[x~] = w, where wl = w~+~ for all i, if 
E [ ( x -  w ) ( x -  w) r] = M, where M is Toeplitz(~by~t , and if all finite 
subsets of xo~ have a multidimensional Gaussian distribution. 
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The Band-Limited Gaussian Periodic Process. Let  co be a r a n d o m  

variable as before, and let yo~(t) be a continuous scalar function of t which has 
a Fourier transform which is zero at radian magnitudes of 7r/2P and higher. 
The yo~(t) will be called a band-limited Gaussian periodic process of period T if 
the sequence of samples 2 .... y~(--T/[3), y~(O), y~(T//3),.., constitute a discrete 
Gaussian periodic process of period/3, where/3 is the least integer greater 
than or equal to 7"/7 ~. 

T h e  B a n d - L i m i t e d  M - P A M  P r o c e s s .  A generalization of pulse ampli- 
tude modulation (PAM) is a signal of the form 

x(t) ~ ~,-a ~-- ~ (r.)~h~(t- nT) (1) 
n=--o~ / = 0  

where (r,)~ is the Ith component of the M-dimensional column vector r , .  
When M = l, this reduces to ordinary PAM. (8-m The generalization will be 
called M-PAM. Let r be an infinite column vector constructed from the 
m-dimensional vectors of Eq. (1) such that its transpose is r 7 = [..., rTa, 
ro r, raT,...]. For the x(t) of Eq. (l)  to be strict-sense statistically periodic, 
r must have strict-sense statistically periodic components. It will be assumed 
that either (1) the components of r are a discrete Gaussian periodic process, 
with period M, or (2) that r i and r i are statistically independent for i V: j 
and r i has a known M-dimensional cumulative distribution function which 
is independent of i. In either case, x(t) is statistically periodic with period T. 

Equivalences. For any zero-mean band-limited Gaussian process x(t) 
with period T, there exists an M-PAM process with the same statistics. If M is 
large enough so that samples every TIM specify x(t) by the sampling theorem, 
then the samples of Eq. (1) contain enough information to specify the time 
function. A straightforward analysis will show that the sample values 
he(nT/M ) of Eq. (1) will be the I ~' column of a ToeplitZ(Mby~) matrix A 
such that ArA equals the covariance matrix of the samples of x(t), and the 
components of r,  are white Gaussia n noise. [The Z-transform associated 
with A, to be introduced in the next section, can be found by using the 
Z-transform generalization of theorem 1 of Brockett and Mesarovic,(14) If the 
mean of the samples of x(t) lies in the space spanned by the columns of A, 
then giving the components of r.  a mean obtained by using the generalized 
inverse (aS) of A will also produce an M-PAM process with the same statistics 
as x(t). 

2 The sampling theorem shows that yo~(t) can be reconstructed from these samples. For an 
early derivation of the sampling theorem, see Whitaker ~2z). For a modern engineering 
viewpoint, see Papoulis c23~ or Shannon. (~) 
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T-Shift Ergodic Processes. Let xo~(t) be a random variable defined on 
--oo ~< t ~ 0% where co denotes the actual process occurring from an en- 
semble g2 of possible co's. A T-shift-invariant set d is a set of all co such that 
if co is in d and if x~(t) = x,o(t -- T), then )t is in sJ. A random process 
x~(t) is defined to be T-shift-ergodic if x,o(t) is strict-sense statistically periodic 
with period T, and if each T-shift invariant set has probability measure 
either zero or one. If x~(t) is a T-shift ergodic random variable, and if 

t 1 
I(n, y, ~, t, co) = tO 

if xo~(t) <~ Yo , x~(t + -q) <~ y~ ..... xo~(t + %) <~ Yn 
otherwise (2) 

R_I ] 
g(co) = R-,~lim (l/R) [ ~__ ~ I (n ,y ,  ~',t -~ nT, co) (3) 

then the ergodic theorem ~16) shows that g(co) converges with probability one 
to the nth-order cumulative distribution function (CDF) of x(t). In words, 
the time average of Eq. (3) converges to the ensemble average of the CDF 
with probability one. 

Classes of Statistically Periodic Processes. In the physical world, 
time is a locally defined variable, so that most physical processes of a periodic 
nature will usually be related to an idealized periodic process, such as a 
T-shift ergodic random process, by a change of time variable. The simplest o f  
such physical processes is the randomly delayed T-shift ergodie process, whose 
random variable y~(t) equals xo~(t -- d?), where xo~(t) is T-shift ergodic and 

is a random variable independent of co. The synchronization problem for  
such processes is to deduce the remainder of (~b/T) given samples ofxo~(t -- q~). 
The second simplest class is the random-rate T-shift ergodic process y~(t),. 
defined by y~(t) = x~(~t --  (~), where ~, ~b, and co are independent. 

5. Z .TRANSFORMS T O  BE ASSOCIATED W I T H  
TOEPLITZ(~b~)  MATRICES 

When A is Toeplitz~by~, with ~ or /3 or both ~>1, the Z-transform 
associated with A will be 

[Ao,_nB 
A ( z ) =  ~=-~ A~_:I,_. B 

z--  (4) 

When b is an infinite column vector to be left-multiplied by a Toeplitzc~bye) 

8221513-4 
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matrix, ]3 >~ 1, the Z-transform associated with b will be the vector Z-trans- 
form 

[ b~ ] 

Def in i t ion .  "b is regarded as Toepcol(~)" means that the Z-transform 
to be associated with b is that given by (5) for the appropriate value of ft. 

By substituting e i~ for z, what will be called the 0-transform results. It  bears 
the same relationship to the Z-transform that the Fourier transform bears to 
the two-sided Laplace transform. By use of distribution theory or "Fourier 
transforms-in-the-limit," as defined by Bracewell, (m the 0-transform of 
periodic sequences will involve Dirac delta functions. 

The following are easily verified: 

If A is Toeplitz(~byt~) and has associated Z-transform A(z), then the 
transpose of A, denoted A r, is Toeplitz(~by~) and has associated Z-trans- (6) 
form Ar(1/z). 

If A is Toeplitz(~bur it is also Toeplitz(,~by,p) for any positive integer n. (7) 

6. P R O D U C T S  O F  TOEPLITZ(~byB) M A T R I C E S  

A doubly infinite matrix A is said to be multipliable by infinite matrix B 
or infinite column vector b if 

Ai~B~j, ~ Aizbz 

converge, respectively, for all i, j or all i. 
One way to study the convergence problem is to require con- 

vergence of each component of A B  or Ab.  Assuming A is ToeplitZ(~byBi 
and B is Toeplitz(e by,),  sufficient conditions for such component convergence 
are: 

1. 

. 

That the sum of the magnitude squared of the components of/~ 
adjacent columns of A and 7 adjacent columns of B (or the compo- 
nents of b) be finite. (Suggested by R. N. Peterson and based upon 
Schwartz's inequality.) 
That A, B, or b be stable in the sense of having a finite sum of 
magnitudes of components of each column, and the other has 
uniformly bounded magnitudes of components. (Straightforward 
proof.) 
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. That  conditions ensure the applicability for the Z-transform version 
of Parseval's theorem, which is 

unit i=_co 
c i r c l e  

where z is a complex scalar and the other quantities are either scalars or 
finite matrices of  compatible dimensions. There are many conditions for 
which the Fourier transform version of Parseval's theorem holds, as) When 
Parseval's theorem does hold, it follows that C = AB can be evaluated by 
use of  the fact that the associated transforms obey C(z) = A(z)B(z). 

An alternative approach to the general problem of convergence of linear 
transformations is the square-summable theory of Widom, (2) which assumes 
multiplication of transforms without proof. In this approach, only linear 
transformations which map squared-summable vectors into squared-sum- 
mable vectors are considered convergent. Widom shows that a necessary and 
sufficient condition for such convergence of A is that A(d  ~ be essentially 
bounded 3 on --~r ~< 0 ~< 7r. The appropriate generalization, having a similar 
proof, is that a Toeplitz(~by~) matrix A is convergent if and only if 

g(O) - -  sup ] xr*Ar*(e i~ A(ei~ I 
a l l x # - o  

is essentially bounded on --rr  ~ 0 ~ 7r. 

7. SPECTRAL PROPERTIES O F  TOEPLITZ( .byB) 
T R A N S F O R M A T I O N S  

Suppose M is Toeplitz(~by~) and p is an infinite column vector with scalar 
associated transform p(e~~ I f  q = Mp with q(e ~~ scalar, then it is desired to 
find how q(e i~ is related to p(ei~ not by the somewhat clumsy definition 
q = Mp, but rather directly in terms of the spectrum ofp .  Such is the objec- 
tive of this section. 

The first step needed is the following. Letp be an infinite column vector, 
and let p(e ~~ be its associated 0-transform when p is regarded as Toepcol m , 
and let ~(e ~~ be its s-dimensional associated 0-transform when p is regarded 
as Toepcolc~ ) . Then, 

p~(e i~ = (1/o 0 ~ p(e i(~ e i~(~ (9) 

M(x) is essentially unbounded on a ~< x ~< b if the sets {all x such that i M(x)[ > n} 
each have positive measure for n = 1, 2, 3,... 
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To prove this, consider the identity 

q=O 

(10) 

By adding terms of value zero, the sum for }~ may be given by 

iP~(e~~ = ~ P~e~~ moa 
q n ~ - o o  

Because of identity (10), this becomes 

.~(e ~~ = ~ eiq2~("-')/~p.~e-i~176 
m=--oz q~O 

Interchanging the order of summation produces Eq. (9), since the m summa- 
tion gives the shifted 0-transform ofp. 

Equation (9) gives ~(e i~ in terms ofp(ei~ The inverse relation is also of 
interest. Using the identity 

m - - 1  

n = - - m  i=O q = - - m  

and the basic definitions it is easy to show that 

c~--i 

p(e ~~ = ~ e-i~ i~ (12) 

By using (10), it is easily verified that substitution of Eq. (9) into (12) gives 
the original p(dO). 

Equations (9) and (12) can now be used to study the spectral effects of the 
operation x = My, where M is Toeplitz(~bym, which was the objective 
formulated earlier. Letting the dot ('), caret (^), and tilde (~) denote the asso- 
ciated transform when the vector is regarded as Toepcol m , Toepcol(~), or 
Toepcol(m, respectively, the transform equation becomes 

k(e 'o) = M(eiO)y(e io) 

Applying Eqs. (9) and (12) and the rules for matrix multiplication and 
changing the order of summation gives 

~(e i~ = ~ 2(ei(~ f (O, k) (13) 
k=O 



Statistically Periodic Processes and Toeplitz(~by~) Matrices 197 

where 

f (O, k) = ~ Z (l/o) ei(~176 i~ (13a) 
r ~ O  / = 0  

This shows that multiplication of  a column vector by a Toeplitz(~byB) matrix 
is like multiplying the vector's components by a discrete periodic sequence, 
which is hetrodyning. The affect of  both is a sum of rotations of  the O-trans- 
form. 

8. I N V E R T A B I L I T Y  A N D  L INEAR I N D E P E N D E N C E  
OF C O L U M N S  

Toeplitz showed that the eigenvahies of  a Toeplitz(lbyl) matrix coincided 
with the set of  values on [ z ] = 1 of  the Z-transform associated with the 
matrix. (1) The associated eigenfunctions must therefore have associated 
0-transforms of 3(0 - -  00), where --Tr ~< 00 ~< ~r. Widom (2) shows that the 
inverse of  a Toeplitztlby~) matrix A exists (in the sense of  being an operator 
which takes square-summable vectors into square-summable vectors) if and 
only if 1/A(e i~ is essentially bounded on --~r ~< 0 ~< ~r. I f A  is Toeplitzc~by~ 
with o~ v~ fi, then A will be singular in the sense that a nonzero x vector exists 
such that Ax -~ 0 or xrA = 0. [This is easily proved by using the rectangu- 
larness of  A(z) to find a finite vector y such that A(exp iO')y or yTA(exp iO') is 
zero, and letting x(expiO) = 3(0- -O ' )y . ]  The generalization to a 
Toeplitz(~by,) matrix A is that A is an invertible square-summable operator 
if the components of  A(e i~ and 1/det A(e j~ are essentially bounded on 
- -  ~r ~< 0 ~< or, as follows by application of Cramer 's  rule for the inverse. The 
columns [or rows] of  A will be linearly independent in the square-summable 
sense if the components ofA(e i~ and 1/det Ar(ei~ i~ [or 1/detA(ei~176 
are essentially bounded on --rr  ~< 0 ~< ~r. I f  A is Toeplitz(~by~ and invertible 
with inverse B, then B(e i~ = [A(ei~ -1. I f  A has linearly independent 
columns, then its generalized inverse B is B = [Ar(e-i~176176 

9. PERIODICALLY SHIFTED BASIS F U N C T I O N S  

Let x(t) be a square-integrable scalar function of t ~ ( - -  oo, oo). Let x(t) 
be band-limited to co 0 , which means its Fourier transform is zero for radian 
frequency magnitudes greater than co o . I f  x(t) is a random process, the prob- 
ability measure associated with it could be represented by the probability 
measure on a discrete sequence {am}, n . . . .  , - -1,  0, 1,..., provided a linearly 
independent basis set of  signals r n . . . . .  - -1,  0, 1,... exists such that 

x(t) = ~ a,q~,(t) (14) 
n ~ - - o o  
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The sampling theorem shows, for example, that one suitable set of r 
functions is 

r = {sin[rr(t -- nT)/T]}/{vr(t -- nT)/T} (15) 

provided T ~< ~r/coo. 
In applications, a periodic property of the q~,(t) functions will be espe- 

cially practical since any related hardware or data processing algorithms will 
be periodic. However, the flexibility to have the r functions have prop- 
erties different from (15) is sometimes desirable. For  example, a communica- 
tions channel may have pure exponentials for eigenfunctions, so that narrow- 
bandwidth r functions approximating the pure exponentials are useful in 
obtaining high efficiency. 

Basis signals {r with the practical features of periodicity 
and the necessary generality can be constructed as follows from a set 

= {h0(t), hi(t),..., hM_l(t)} of M scalar functions defined on -- oo ~< t ~< 0% 
with M ) 1. Specifically, if 

~ ( t )  = h(~mod~t)(t -- (n -- (n mod M))T)  (16) 

it will be possible to rewrite the expansion of (14) as 

X(I) i M--1 = ~ (r.)ihl(t -- nT) (17) 
~ = - m  i = 0  

provided rk r = [akM , al~M+l . . . .  , a k M + M _ l ] .  The set of  all possible x(t) des- 
cribed by these equations can be called "the space spanned by the set g4 ~ and 
all its T-shifts." The set of basis functions described by Eq. (17) can be called 
a set of periodicallyshifted basis functions. The M-PAM process was identical 
to (17), so this formulation of basis functions is especially useful in dealing 
with statistically periodic processes. 

The special case M = 1, ho(t) equal to Eq. (15) with n = 0, is known by 
the sampling theorem to have all its T-shifts span the space of functions 
band-limited to coo - The space spanned by any other set W and its shifts can 
be compared to this space of all functions band-limited to coo by the following. 

Theorem 9. | .  Let SH be the space spanned by gr = {ho(t),..., hM_l(t)} 
and all its (pT)-shifts, and SK be the space spanned by d = {k0(t),..., ku_~(t)} 
and all its (qT)-shifts, where p, q, M, and N are all positive integers. Let 
and ~ contain functions whose Fourier transform is bounded at co = ~coo, 
and zero for ! co I > coo for some finite co o . Then, Eq. (18) or its associated 
Z-transform is a necessary and sufficient condition for SH C S t .  Further- 
more, when SH C SK, the expansion coefficients in the S r  basis are given by 
Eq. (19), where these equations arise in the proof. 
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Notation. 

h~(t) = 

kT(t) = 

~r(t) = 

[ho(O, h~(t) ..... hM_~(t)] 

[ho(t), l:~(t),..., ~M_~(t)] 

[ .... sine (tsTc~ §  sine (_~T_), sine (tsTc~_-- 1 ),...] 

where sine x = (sin rrx)/Trx] 

fir(t) ----- [ .... hr(t  -I- pr) ,  hr(t),  hr(t  _ pr),. . .] 

lcr(t) = [..., kr( t  q- qT), kr(t) ,  kr( t  - -  qT),...]. 

Proof. Let  s be the least c o m m o n  multiple of  p and q. Let  c~ be the 
least integer such that  27re~/sT >/co o . The funct ion sinc(t~/sT) and all its 
(sT/~)-shifts serves as a basis set for  compar ing  its subspaces S/~ and SK. 
Therefore,  by the sampling theorem,  there exists a matr ix  A such tha t  when 
s = p,  then h(t) = A~(t) ,  or when s > p,  then 

h(t -- is -- p )T  

~- A~( t )  

Similarly, there exists a matr ix  B such that  when s = q, then k(t)  = Bgr(t), 
or when s > q, then 

Ik(t) ] 
k(t -- qf) = ~ ( t )  

k(t -- (s -- q)r 

Note  that  A has (Ms/p) rows, B has (Ns/q) rows, and all o f  these rows are 
infinite. Let  C be the ToeplitZ(M~/~bys~l matr ix  which has A for  its rows 
number  0 through (Ms/p) --  1; let D be the T0eplitZ(N~/qby 8~1 matr ix  which 
has B for  rows number  0 through (Ns/q) - -  1. Then,  la(t) = Cffe(t) and 
f~(t) = D~(t) .  Thus if x(t) = xrfa(r), and y(t) = yrf~(t), then x(t) = xrCge(t), 
and y(t) = yrD~r(t). Now,  SH C SK if and only if, given any x r as defined 
above,  there exists a y r  such that  x ( t ) =  y r k ( t ) =  yrDgr(t).  Because the 
components  of  g,(t) are linearly independent ,  this requires that  a y exist such 
that  x r C  = y r D  has a solution for  y, given arbi t rary  x. Denot ing  generalized 
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inverse of a matrix with a superscript q- and invoking its properties ~7,15~ 
shows that the necessary and sufficient conditions for such a y to exist is 

C+CD+D = C+C (18) 

Equation (18) is therefore necessary and sufficient condition for S~ C S•. 
When it holds, the general y solution, by the properties of the generalized 
inverse, is 

y ~- (DT)+CTx + [ 1 -  (Dr)+Dr]q~ (19) 

where r is arbitrary. 

Coro l la ry  9.1. A necessary and sufficient condition for (a) the coeffi- 
cients in a basis set ~ and its T-shifts to be unique or (b) a set ~ and its 
T-shifts to be linearly independent functions is I -- (Cr)+C r ~ I - -  C C  + = 0 

or the equivalent equation of associated Z-transforms. (The proof  uses 
Theorem 9.1 with p = 1, ~r = ~ ,  and is based upon requiring the matrix 
premultiplying r in (19) to be zero. Note that the condition upon C is that 
its rows must be linearly independent.) 

C o r o l l a r y  9.2. A necessary and sufficient condition to make W and 
all its T-shifts an orthonormal basis set is C C  r = M/ sT ,  or the equivalent 
equation of associated Z-transforms. (Orthogonality of band-limited time 
functions is equivalent to orthogonality of their discrete values sampled so 
as to satisfy the sampling theorem. The C C  T matrix is the matrix of inner 
products of the discrete sample values.) 

If  ki(z)  li(z), i ~ 0,..., M --  1, are all-pass Z-transforms, ~1~) then one 
way to generate an orthonormal set ~ '  ---- {h0(t) ..... hM_~(t)} would be to have 

fa(t)-= C ~ ( t )  

as in the proof  of Theorem 9.1, and then let 

c(z) = ['1 r diag[k0(z),... , kM_l(z)]P 1 

• P2 v diag[10(z),..., IM_~(z)]P~ 

where the Pi are orthornormal M by M matrices of scalars. 

10. T H E  DELAY M A T R I X  

Suppose that x( t )  is a band-limited process whose Fourier transform is 
zero at radian frequency magnitudes of ~r/T' and greater, and that x and y are 
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infinite vectors such that x~ = x ( i T ' )  and Yi ~ x ( i T ' - - A ) .  The sampling 
theorem can be used to show that 

y = Dax  (20) 

where 

(Da)~j = {sin w[(A/T') - -  i + j]}/~r[(A/T3 - -  i + j ]  (21) 

Note that Da is Toeplitz(abya). Da will be called the A-seconddelay matrix. 
The Z-transform for Da(z) is divergent for l z]  @ 1. Inversion of the 

0-transform verifies that 

Da(exp iO) = exp( - - iAO/T ' )  (22) 

Equation (22), combined with Eq. (6), shows that 

Da = D_~a (23) 

The following conclusions about the Da matrix can be drawn by com- 
bining the above results with definitions and earlier results. 

Da is not stable except when ,~ = mT', integer m. (24) 

Da has elements uniformly bounded by 1. (25) 

Da is multipliable by any stable matrix; any stable matrix is multi- 
pliable by Da. (26) 

Da is multipliable by Toeplitz(zbyz) matrix with bounded elements 
whose 0-transform is absolutely integrable; any such matrix is 
multipliable by Da. (From conditions for Parseval's theorem.) (27) 

Da is nonsingular for all ,~. (28) 

DaD~ = Da+e) (29) 

When Da is regarded as Toeplitz(~by~), with an c~ by ~ associated 0-transform 
D(e~~ then for 0 ~< (p, q) ~< c~ --  1, 

[Da(eiO)] .e sin 7r[(A/T') - -  p - -  + q] e_iO" (30) 

The same pattern of ideas which proved Eqs. (9) and (22) can be used to 
handle the above. The result, after summing a geometric series, is that 

ei[(atr')-~+ql(~ _ e-i2,[(Jlr')-~+~]] 
[Dj(eiO)]~,~ _-- i ~ l ~ - X T r ~  when denom v~ 0 

(ei[(a/r,)-~+q](o/o) otherwise. (31) 
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The delay matrix plays an important role in analyzing communications 
and other physical processes, since samples of the delayed process will equal 
the delay matrix operating upon samples of the idealized (undelayed) process. 

11. APPLICATIONS A N D  CONCLUSIONS 

The basic tool of  Toeplitz(~byB) matrices is likely to be useful whenever 
processes with periodicity or statistical periodicity arise. Some examples now 
follow. 

Mean Square Evaluation. Suppose a zero-mean random vector x has 
covariance matrix M ~- E[xxT], where M is Toeplitz(~by~), with associated 
Z-transform M(z). The mean square of the components of x can be found as 
a limiting case of  the trace operation, or else the Z-transform power spectral 
density version of Parseval's theorem could be used. Letting Z -~ denote the 
inverse Z-transform operator, the desired result becomes 

mean square of the components of  x = (1/~) ~ Z -1 I[Mli(z)]lo 
i = 0  

(32) 

This formula is useful when x is a statistically periodic process whose M(z) 
can be evaluated. 

Sampled-Data Difference Equations with Periodic Coefficients. 
Consider the period-c~ sampled-data difference equation given by 

R~ Ra 

xn ---- ~ an rood ~,ixn-i -~ ~ b~ rood ~,ir~-~, g l ,  R2 ~ M (33) 
i = 1  i~O 

I f  anmod~,~ is taken to be 0 for i < 1 or i > R1, and if bnmoa~,~ is taken to be 
0 for i < 0 or i > Rz,  then this can be rewritten (with a change of variable) 
a s  

x~ = an raod . . . . .  X~ + ~ bn rood . . . . .  r~ (34) 
~ = _ c o  m=_oo  

Now, if A,,~ ----- a~mod,,i-j and Bi5 = bimod~,i-j , it is readily verified that A 
and B are Toeplitz(~br,), so that Eq. (34) becomes the doubly infinite matrix 
equation x = Ax  4-Br.  The forced solution is x = ( I -  A)-IBr and its 
associated Z-transform is x(z) = { [ I -  A(z)]-lB(z)}r(z), where x and r are 
now regarded as Toepcol~. Thus the forced xn is the (matrix) convolution of 
the inverse Z-transform of { [ I -  A(z)]-lB(z)} and the vector sequence rn, 
where r~ T ~ [rn~, rn~+~ ,..., rn~+~_l]. 
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Shift Register Implementation. Suppose  a/3-input, c~-output, linear 
t ime-invariant shift register receives at instant i the/3-dimensional  input vector 
f~ ,  and outputs  the ~-dimensional  vector c. The fo l lowing convo lu t ion  
s u m m a t i o n  will relate output  with input: 

c7~ = i /%-k./~ (35) 
i =  c o  

where h~ is an c~ by/3 matrix and the causality condit ion h~ --  0 for i < 0 
applies in all physical  systems. It will also be true that w h e n f i s  regarded as 
Toepcol~m and c as T o e p c o l ~ ,  Eq. (35) leads to the relation c(z) ~ H(z) f (z ) ,  
where H is Toeplitz~byB~. The/3- input ,  c~-output shift register can be con-  
structed from ~/3 single-input, s ingle-output t ime-invariant shift registers 
whose  outputs  are summed.  As a consequence ,  mult ipl ication o f  a vector by 
a Toeplitz~bys~ matrix can be accompl ished by a matrix o f  scalar shift re- 
gisters. I f  the input appears sequentially on  the same line, a buffer must  be 
inserted so that inputs are processed/3-at-a-t ime,  and if  the output  is to be 
sequential,  an output  buffer must  take the ~-at-a-time output  and release it 
evenly one-at-a-time. 

f(t) 

(A) 

e_j ,f/2 
t T/~[me-c ~176 ;delay 

~(~) 2-input, 3-output linear shift 
register ~ li~ez_i/3 ~~#jl< 

line 
T/3 

f(t) 

(B) 

I e_J~T/2~ 

llne J 
M(eJ ~T) 2-input, 3 outpu 

linear time-invariant contSnuous 
network 

--/-,,4 ~im~ di . . . .  t~ I \  ,~ 
T ~ y  li~J 

T L2T~3ed:~syrlte ~ Y 
samples 
every 
T/3 

Fig. 1. Block diagrams for real-time computation of DrMf, when M is Toeplitz(aby~), 
f i s  the infinite vector whose ith component isf(iT/2), and z = e ~~ The switch marked T 
denotes the usual sampled-data operation of taking a sample every T sec. 
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Continuous Filter with Sampler Implementation. When the dis- 
cretefvector originally comes from a continuous signal, then known sampled- 
data techniques permit certain options in implementation. Fig. 1 (A) illustrates 
one arrangement, which directly implements the theory of the preceding 
paragraph. On the other hand, the same output is obtained in Fig. I(B) by 
employing continuous filters preceding the samplers. I f f ( t )  is band-limited 
to coo, these filters can have arbitrary response at I co i > o90, which, of 
course, simplifies their implementation. 

Data-Processing Algori thm. The periodic-coefficient difference 
equations and shift registers can be connected by finding a matrix C such that 
C(I- A) -1 = ( I -  A)-XB. Assuming such a C is lower triangular, Fig. 2 
generates the difference equation (34), in the special case of Toeplitz~2by~ 
A and B. Feedback shift registers can therefore be constructed to perform 
Toeplitzc~by ~ matrix operations. Digital computer data processing algorithms 
can of course be developed with the same feedback structure as the shift 
register. 

I ! o Xn 

Z ~  n rood 2 = O, down 
when n mod 2 -~ 1 

Switch up when 
n rood 2 = O, 
down when ~ _  
n rood 2 = 1 

Fig. 2. A shift-register implementation related to Eq. (33), with 
Rz = R2 = 3 and c~=2. 
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bI~TRIX DOMAIN 

Assume H is Toeplitz(~ by 

x = Hr 

Uses: 
i. Use for simple notation, asd 

simple conceptual formulation 
of operations. 

2. Derive desired operators in this 
domain by linear algebra techniques. 

3. Derive optimal operators to sepa- 
rate signal plus noise in this 
domain by variational methods. 

~. Formulate probabilistic and 
statistical problems in this 
domain. 

TRANSFORM DOMAIN 

If H(z) is ~ by 

r(z) is a S-dimensional column 
vector 

x(z) is an ~-dimensional column 

t h e n  x ( z )  = H ( z ) r ( z ) .  

Uses: 
i. Perform calculations such as 

error, information rates, etc, 
2. Derive necessary or sufficient 

conditions for various theorems 
and usi frequency insights to 
prove theorems. 

3, Treat systems described by finite 
difference equations by use of 
poles and zeros in transform 
domain, and design by placement 

I of poles and zeros. I 

TIME DO~LiIN 

x n = ~ Hn-k r k 
k=-~o 

Uses: 
1. Formulate problems most easily 

in this domain so that they can 
be converted to other domains, 

2. Compute numerical solutions to 
sampled-data difference equations 
with periodic coefficients. 

DIFFERENCE ALGORITHM OR SHIFT 
REGISTER DOCk\IN 

I i 
rn0---~ matrix i >.Xno 

rn I ) of shaft ------>xn I 
registers : 

rn~_ I ) '~Xna_ l 

Uses; 
i. Construct hardware implementation 

for signal processing. 
2. Tie in the other domains to the 

generating algorithm of a 
difference equation. 

3. Create algorithm for digital computer 
processing and system simulation. 

Fig. 3. The four domains of  Toeplitz(~byr matrices. 

W i e n e r  Filtering, S ta t ionary  and Periodic .  If r is a data vector, 
f i s  a vector of measurements, c is measurement noise, f = Ar q- c, r and c 
have zero mean and are statistically independent, E[rr T] = Q, E[cc T] ----- N, 
and (AQA T" q- N) is nonsingular# then a straightforward variational argu- 
ment ~z~ will show that the least-mean-square linear estimator of r given f 
is Tmeanf~- QAT(AQAT@ N)- l f  When Q and N are nonsingular, it is 
easily shown that Tmean is then equal to ( Q - l §  ArN-1A)-~ArN-1 and 
that the resulting error vector ( r -  Tmeanf )has  covariance matrix 
(Q-1 + ArN-1A)-I. If r and c also have a multidimensional Gaussian distri- 
bution, then Tmeanfis the conditional mean of r given f,  which justifies the 
name. 

If the r, c, and f vectors have a periodic structure such that A is 

* A sufficient condition for nonsingularity is that N be nonsingular, which occurs in most 
physical situations. 
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Toeplitz(~by~) , Q is Toeplitz(sby~, N is Toepli tz~by~, and (AQA T 4- N) is 
nonsingular, then Tme~n(z) becomes 

Q(z)Ar(1/z)[A(z)Q(z)Ar(1/z) 4- N(z)l -~ (36) 

This is implementable by the shift registers of Fig. 1. When ~-----~ = 1, 
this is the well-known (noncausal) Wiener filter for a stationary sampled-data 
process. When c~,/3, or both are greater than one, the result is the generaliza- 
tion of the stationary Wiener filter to the least-mean-square (noncausal) 
filter for a sampled-data statistically periodic process. Although Eq. (36) is 
believed to be new as a matrix equation, its derivation was easy because the 
minimization was carried out in the matrix domain and then converted to 
the Z-transform domain. Equation (36) can be used to give the least-mean- 
square estimate of an M-PAM signal in noise. If  the decoded noise is required 
to be independent of the signal, then the Q ~ oo limit should be taken, giving 
an M-PAM decoder of 

[Ar(1/z)N-~(z)A(z)]-~AT(1/z)U-~(z) (37) 

These decoders are the M-PAM generalizations of Smith's 12~1 1-PAM 
decoders. The use of Toeplitzl~byo) matrices made the M-PAM generalization 
much simpler than the I-PAM method of Smith, which would be extremely 
hard to generalize. This illustrates the real power of Toeplitz(~by~ matrices. 
The optimization here was carried out in the matrix domain, where it was 
easy, rather than in the transform domain, where it is difficult. 

Information and Synchronization. It is possible to prove that the 
1-PAM receivers of Smith ~21~ or M-PAM receivers based upon Eq. (36) or (37) 
are information lossless when the channel noise is independent of the signal 
and Gaussian. ~12~ This is done by showing that the operation of these re- 
ceivers is equivalent to first whitening the noise with a Toeplitzc~byz~ linear 
transformation, followed by a Toeplitz~zby~ or ToeplitZcMby~ transfor- 
mation which is information lossless because there is no signal in the null 
space of this linear transformation and because the whiteness of the noise 
prevents using knowledge of the noise in the space orthogonal to the signal 
space to extrapolate the noise into the signal space. In studying synchroniza- 
tion, Ilz~ Toeplitzl~by~ transformations are required to make certain ortho- 
gonal projections whenever the signal has fewer degrees of freedom than its 
bandwidth warrants. 

C o n c l u s i o n s .  The four domains in which a Toeplitzl~b~ ) matrix can 
be viewed are illustrated in Fig. 3, with the important uses for each domain. 
As can be seen from the material in this figure, Toeplitzl~by~ matrices are 
useful in many aspects of statistically periodic processes. 
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